Virtual Screening against Mycobacterium tuberculosis Lipoate Protein Ligase B (MtbLipB) and In Silico ADMET Evaluation of Top Hits
نویسندگان
چکیده
The emergence of drug resistant strains of Mycobacterium tuberculosis(Mtb) has spurred the search for new therapeutic targets for the development of more efficient anti-tuberculosis drugs. Lipoate protein ligase B (LipB), an enzyme involved in the biosynthesis of the lipoic acid cofactor, is considered as a very promising drug target in M. tuberculosis, since the bacteria has no known substitute enzyme that can take over the role of LipB in its metabolic system. Hence, apharmacophore-based screening, docking, and ADMET evaluation of compounds obtained from the National Cancer Institute (NCI) Database were performed against the MtbLipB enzyme. Consequently,nine compounds with superior binding energies compared to its known inhibitor (decanoic acid) have been identified. Moreover, among these nine compounds, NSC164080 (methyl 2-(2-(((benzyloxy)carbonyl)amino)propanamido)3-(4-hydroxyphenyl)propanoate) displayed the most favorable ADMETproperties. The results in this work may pave the way for the development of a novel class of antituberculosis agents.
منابع مشابه
In Silico Screening for Novel Inhibitors of DNA Polymerase III Alpha Subunit of Mycobacterium tuberculosis (MtbDnaE2, H37Rv)
Tuberculosis, a pandemic disease is caused by Mycobacterium tuberculosis (Mtb). DNA polymerase III encoded by DnaE2 of Mtb is specifically required for its survival in vivo, and hence can be considered to be a potential drug target. Amino acid sequence analysis of the MtbDnaE2 and its human counterpart does not show any significant similarity. Therefore, a 3D model of the MtbDnaE2 was generated...
متن کاملToward antituberculosis drugs: in silico screening of synthetic compounds against Mycobacterium tuberculosisl,d-transpeptidase 2.
Mycobacterium tuberculosis (Mtb) the main causative agent of tuberculosis, is the main reason why this disease continues to be a global public health threat. It is therefore imperative to find a novel antitubercular drug target that is unique to the structural machinery or is essential to the growth and survival of the bacterium. One such target is the enzyme l,d-transpeptidase 2, also known as...
متن کاملReverse Docking Study Unravels the Potential Mycobacterium tuberculosis Enzyme Targets of Agelasine F
The natural product Agelasine F found in marine sponge Agelas sp. along with the known inhibitors of the target enzymes in Mycobacterium tuberculosis (Mtb), and the first-line tuberculosis (TB) drugs have been docked to enoyl reductase (InhA), Isoniazid-resistant I21V and S94A enoylACP (COA) reductase mutant enzymes, 7,8-diaminopelargonic acid synthase (DAPAS), pantothenate synthetase (PS), and...
متن کاملIn-silico Metabolome Target Analysis Towards PanC-based Antimycobacterial Agent Discovery
Mycobacterium tuberculosis, the main cause of tuberculosis (TB), has still remained a global health crisis especially in developing countries. Tuberculosis treatment is a laborious and lengthy process with high risk of non compliance, cytotoxicity adverse events and drug resistance in patient. Recently, there has been an alarming rise of drug resistant in TB. In this regard, it is an unmet need...
متن کاملIn-silico Metabolome Target Analysis Towards PanC-based Antimycobacterial Agent Discovery
Mycobacterium tuberculosis, the main cause of tuberculosis (TB), has still remained a global health crisis especially in developing countries. Tuberculosis treatment is a laborious and lengthy process with high risk of non compliance, cytotoxicity adverse events and drug resistance in patient. Recently, there has been an alarming rise of drug resistant in TB. In this regard, it is an unmet need...
متن کامل